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ON A METHOD OF EXTREMAL CONTROL”

M.I., LOGINOV

An encounter game problem /1,2/ is analyzed on a prescribed time interval for con-
trolled cbjects whose dynamics are described by nonlinear differential equatioms.
It is assumed that the game's payoff is a convex function, differentiable in some
domain, of the difference between the cbjects' final states. Under specific con-
ditions a procedure is justified for the formation of an extremal strategy of one
of the players, guaranteeing him a game result no worse than in the corresponding
programmed maximin problem for the initial position. By example it is shown that in
the case of nonlinear systems the procedure described in the paper for constructing
the optimal strategy covers certain irregular situations in which the extremal aim-
ing rule developed for linear /1/ and nonlinear /3/ controlled systems is inapplic-
able. In the case of linear systems the conditions found in the paper ensure the
regularity of the encounter game problem and, as shown in /4/, the method proposed
for solving the encounter problem occupies an intermediate position between the
extremal aiming rule /1,2/ and the direct methods in differential game theory /2,5/.

1. cConsider the motions y (f) and z (f) of controlled objects described by the nonlinear
differential eguations

v =0+ (L u, s P ys R (1.1
2 =@ () + ), vEQzER

(the sets P and Q are compacta in RP and R? , respectively). We assume that the motions y (i)
and 7 (f) are examined on a prescribed interval [t,, #] and that the payoff is determined by the
equality
vI0] = o ({z D)} — (¥ O)}m) = o (z (BN

where ¢(z) is a prescribed function of the vector-valued argument i=; {#}m, {y}n are vectors com-
posed of the first m components of vectors z and y . Having the choice of the control ue& P

(v = @) at his disposal, the first (second) player tries to minimize (maximize) the quantity
v[®l. By U(-|t,® and V(. |0 we denote the sets of Borel-measurable functions u(:):7 —P
and v (:): T —»Q, where T = [¢, 8); by (t; t,y, u{-))and 2(%; ¢ 2 v (), T = T we denote the
solutions of Egs.(1.1) generated by the controls u () and »(-) under the initial conditions
y( =y, z(t) =32 Let

p (68 y D= sup U{y@® bty u( N .2
U(-{t, 9
Uy vl == g s L %, .
P (8,0, 2, ) V(s.llﬁt),o)l {z ®; 22 v( ))}m

where ! is an arbitrary nonzero m-dimensional vector; the prime denotes transposition.

Condition 1. A. The functions fi, ¢ (i = 1,2) are continuous in all variables, while
the functions f9 (i =1, 2) are continuously differentiable in the variables y and z , respect-
ively, and satisfy the conditions

T ) Ke(lzlP + 1) (8 = 1,2; ¢ = const)

B, The function o (z) is convex and has continuous and uniformly bounded derivatives in
domain G = {z | o (2} > inf; o (2)}.

C. The sets

() ={g[g =g, u), uE P} Q) ={g?| =
79 (s v), ve Q)

are convex for all #& ¢, 4]

D. For any unit vector / the maximum in the right-hand sides of equalities (1.2) is reach-
ed on a unique programmed motion {y° (v; t, y, I), 2° (z; ¢, 2, I)}  generated by the vector-valued func-
tions {g¥ (v; u°(%; &y, )y ¢® {%; o° (v; ¢, 3, D)}
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We note that when Condition 1 is fulfilled the attainability domains G, (¢ 9,y) and
G, (1,9, 2) of motions {y(t &4 w(-N}m and {2(5 4 2 v (-)}m corresponding to the initial
position {t, ¥ 3}, are convex campacta in R™ by the instant 7 =19 /3/, while the guantities
1 and P2 are the support functions of sets G, and G, . Let (I} be the function adjoint
/6,7/ to the convex function o{2), i.e., o{l) =sup, {{z—6(a)} and L =domo (-)= {{= R"{
o (< oo} The equality

o(z) = max {Vz— o ()}

is valid /6/ on the strength of Condition 1B. We introduce into consideration the programmed
maximin quantity for the initial position {f, Ys %3}

€ (fyy Yor %o} = max ;2},? o{{z @ — {y ) =

1111&})( I:l(:’l‘)l m?x {l {Z (0))71; =V {y (ﬂ)}m — o (l)}

v N0 E6:i(8; &, ¥o)s {2 O SGa(D; to,20) L= L

The adjoint function o{l) is convex; therefore, on the basis of the general minimax theorem
/8/ we can write

€ (ty) Yo» 50) = n}g {p2 (L0, 2o, 20) — 1 (3, B, Loy o) — 0 ()} (1.3)

Condition 2. ret I° = L° (4, Yo 2o} be the set of vectors [ on which the maximum in the
right-hand side of equality (1.3) is reached. At least one nonzero vector I = I {fy Yo Zo) € L
exists such that:

A. The derivatives

Wy DY/ oy=Y10; t,y, 0, 0° @ t.2 )/ oz = ZI%; ¢, 2 I

continuous in all variables, exist for any position {t, ¥z}
B. The function

- 4 . ’ of r .
2(l, t, y, 8) = max } { & ¢ p P, u)-gx P{Z19; t, 2, PILe2 (8, 0) (1.4)

is convex in | for all {t,¥,2} where {Y}, and {Z}, are n X m -matrices composed wvf the
first m columns of matrices Y and Z.
C. For any absolutely continuocus functions y (f) and z (f) and for almost all ¢(t €= [t,, 0))
the maxima in the equalities
P4, Plln g™ = max Py e 6oy (9, ey
LEQH
P{ZI; 6 208, Pllwee® =max I {Z[8; ¢, z (D), Plia'g
[i=8)
are reached on the unique vectors g, = g, (¢, y (£), I') and g, = ¢, (¢, 2z (1), D).
In the general case it is difficult to verify Conditions 1 and 2 for nonlinear systems.
However, we can find requirements on the first-approximation system which ensure the fulfil-
ment of Conditions 1 and 2 for the quasilinear controlled objects

v = AD (y + BO () u + MO, o, lyli<p 1.5
£ = A® (0 + B® () v + MO (5, 1), ol <v
where A is a small parameter and the f® (i = 4,2) are continuous in ¢t & [4,®] and twice con-
tinuously differentiable in the phase variables. Let Y [#, ¢] ana Z[#, #] be the fundamental
matrices of the linear homogeneous systems corresponding to Egs.(l.5) with A = 0, u=v=0.

Then Conditions 1 and 2 can be replaced /9/ by the following two requirements:
1) for any unit vector ! the functions

D (1) = 17 (Y18, 1 BO ()}l T (1) = | ' {2 18, d B ()}l
vanish at a finite number points % (the ¢ are from the intervalléy, ¢1 ), and
(i) E>0 (k= t,i=1,2
| dg@dt ;‘_‘§‘,> >0 (k==const, i )

2) the function
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satisfies the ineguality
2xlnt +xlnd>r L) Vie {25, 61
for any two vectors I, and J, (5= Rl,, R = const),
The first player s admissible strategy U is defined as a many valued mapping associat-

ing with each possible position {t ¥. 2} a set U (% ¥ 2) P upper-semicontinuous with respect
to inclusion. The function ¢ is continuous; therefore, the closed convex hull of the set

ity N={M =@ ees ULy}
is uppsr~semicontinuous with resepct to inclusion as well. By motions ¥y (sl we mean the solu-
tions of the corresponding contingency equations /1,2,10/. Let Y (& ¥y 3, U) and Z (8,,2,) be

sets of solutions corresponding to the initial position {#, ¥ 2,} ©f the contingency egua-
tions

FeEinteod s ULresfLn+0,0

rohlem, Find the first plaver's admissible strategy I° ensuzing

wmax max {o ({z 101} ~ {§ 013} WY D1 €2 ¥ (2, wor 200 U,
vy A

zl-)e8 Z (t 20)} = mum Idem (U° — U)

Here and later the Idem in an equality's right~hand side denotes an expression coinciding
with the left-hand side of this eguality under the change of symbols indicated within the
parentheses. )

2. We introduce into consideration the function

eh D =a(c@® ty 5 0) = al{z”@ &2 D)n~— O ¢ ¥ ")

where I’ = I°{},, p,, z;) is the vector figuxing in Condition 2.

Definition. et an m-dimensional vector s{f, 5,2} be defined by the equality

s{hpha)=—do{z{® t, p 8 D)oz

The set U™ (¢, y, 5) specifying the strategy U* consists of all vectors u* & P for which the

condition
s (z? ¥ 2} {Y [ ¢, 'R lﬁl }m' q(l) {2 u*) =% mi? ldem(u* i u«)
WER:
is fuifilled,

Theorenm. If Conditions 1 and 2 are fulfilled, then the strategy consfructed in the
Definition guarantees the first player the result

(7 181 | 20s ¥y» 200 U*) << € (hy Yoy 20)
and, consequently, is the optimal strategy solving the problem,

Proof. sSuppose that the position {2, pld,zId} is realized and letz @yl i P
& 4&.  From Condition 2 follows the existence of the derivatives

yo g & 3z
“35,* = = YL Pl 55 =250 5

Let us estimate the increment of the functione[t] =& (r,y [t]z [t]) on the intervaliy, ¢ Azl
We write it as Ae = 6, -} 8

& =afls-+ At gir+ Add g fe 3 Ay — 2 (£ 4 As, y B 216D}
Sy=p(t-bAr izl ~eit, gl s D)

With due rvegard to the continuity of the derivatives Ju/fy and de/fz with respect to {f ¥ 2}
we have

8y = & (¢, y la), 218D (Y 10 1,y 2], U1}’ % (2.1
$HA
{ yo0 e,y D+ el v — &y BL 2 BDZ 054, 2188 0 X
H
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a1
§ 1@ (2l + ¢ (n v dr -+ o (A2);

E3
gltice @ (v, 2, )

Allowing for the uniqueness of the programmed motions y° (- ¢, y, ) and 2°(- ¢, 2, ), we obtain

8, =g (t+ Aty lth s lil) —e(z 4+ At ¥ (2 + Ag ¢, y [, 1), (2.2)
P+ AL, D)=~ Lyl s WY I8¢,
+LAL

yIL ﬂ IO (v, y° (5 6 g 18, 10 -+ 99 (55 2 (v £,y ), ) de +

i
s (t' y [t z[t]) {Z [ﬁ;t!z [tlv lo]}m X
thAL
{1 (r, 22 (53,2180, 1)+ 4® (5,0 (13 1, 2 18], 1] 0 + 0 (Al
H
The function %{} f, ¥, 2)of {1.4) is convex in ! and positive-homogeneous; therefore it is
the support function of the nonempty convex set

H(t' » Z) = vQQ [{Y [ﬁv tv Y lc]}m’ Ql (t) - {Z [ﬁv ti z, lo]}m' q(e) (t‘) V)]

Relying on Pontriagin's maximum principle and on the results in /3/ (or on the dynamic
programming method), with due regard to Condition 2C it can be shown that for almost all i€
{15y 9] the inclusion

Bt pld, o = Y 8y U Pl 22 —
{Z [‘9; | 4 [, ﬂ}m’g.m = (tv ¥ [#d, 2 {ﬂ)

where gy = g,® (&, ¥y [, ) ¢a® = g® (¢, 5 [i], ) , is valid. From (2,1) and (2.2), the continu-
ity of vector s and of the matrices Y and Z , and the fact that the vector-valued functions
g, e (v yl, ) and ¢ (% 7 (1; 1,2 (1), I')) satisfy the maximum condition, we obtain

a8
Ae== § &,y ] e [T UY 1857y 1ol I g 1] —

i
(Z19; 7, 2[7), P’ 9@ (v, 0 [3]) — 2° (3, ¥ [7], 2 [7])) dv + 0 (AD)

Further, allowing for the form of the set H (1, y [t}, z [x]), we conclude that from any realiza-
tion ¥ It} we can find ¢ = g {3} such that

2.
Ag === S & {7,y (1] 2 DD 185 Ty {3h Do’ (1 [1] — g())dv -+ 0(AD)

g s

Thus, by choosing U = U¥* we getvthat el does not grow on the interval [f, ¥l Now taking
into account that the equalities

Srtn} "-'“’-aa (109 Yo, zﬂ)
eld = o ({z [81}m — {¥ [ﬁ‘]}m

hold by the construction of the auxiliary function &ltl, we conclude that the theorem's as-
sertion is valid.

We note that if the function x=(l 4 ¥, 3} is concave in [ for all {t, ¥, 3}, then by inter-
changing the roles of ¥ and ¥ in the preceding arguments we can obtain a strategy V* guarante-
eing the second player the result

(‘V [ﬁ] ] tm Yor 20» V*) > ¢ (tm Yos z0)

3. DExample. Let the behaviors of the pursuer and evader object be described by the
egquations

Bt ¥ S AR B = e B TR
u?+ P S P, 5 =3, 5 = Al b 5 =2
27 = Azl v 0P F 2P A
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and let ‘
YO = [(ys ) — 22 () + (ys (&) — 35 BA/, A >0
We denote by p (I, t,¥ and g {l,t,2) the support functions of the attainability domains G, (#,¢.%)
and G,(#,t,2. Carrying out the necessary computations, analogous to those in /9/, we obtain
oty z, Ay = pg (s 8, 2} — pht,yy=4 (3‘1 + (0 - 8)Ty +
A0 — 0% (5® — y/2) + Iy (2p + (& — Dz A (0 — 1) (2,* —
p/2) + LR e (@ — %4 4 A (0 — 1) 3z, — p,2/2] +
I [ (& — %4 4+ A (B — 0 (20 — p®)/2] +
LA (O — )t (2 — o)/ BB A (0 — 0% (2, — pf4 +
MR (llv Isy ¥y 5y A‘)
(BP+Hlt=fag=n—pi=14..,8, p=fv=14+a@®— N
We select the initial position {fo, e, 2} such that o= 0, yp = y0, %0 = 30, ¥206 — 520 =8> 0. We
denote

¢ = Otafh, b == B3 (350 — yao®)/2 4 a4
a = P10 + ‘0.'0’0 + A0% (l,o" _— y,o’)lz
ay = z30 + Oz 4 A0 (20" — ppo')f2

and we select g,z Such that
ay =3, he — A, 3y = e — Kk
where the parameters & and & are defined below. Under the assumptions made
pr—pi =Y el + L) —he (12 4 1)) 1 Ab (I 4 L) + M (R — kli— haly)
We denote [i=cosg, ly=sing N then

€ {ts You %) = MAX {p; — My} == max O (g, X, ky,
01 %) um-x{p’ P & (@ &4 Kyy Ky

A V_Z . n
D@ Ay Fony Ry = —— "'sm(aq’"T)+"b+”(nwkgcosm—k,simp)
The sum of the first two summands is maximal for the following values of ¢

=

11 19
90 =, ¢V =gn, ¢®=pn (3.1)

and the magnitude of this maximum equals AV2¢/4 +Ab. Using the implicit function theorem we
can show that for sufficiently small X we can find parameters &k and k, such that the func-
tion ® has precisely three local maxima for @ @),9V(), ¢ (d) corresponding to the values (3.1)
when A=0, and they are equal. The quantity &£°{fs,¥s, %) is positive if VZ2e/d+5>0 or, set-
ting a= (14 2V 2 a, we obtain the condition

aﬁ"[yi—’_g'0~-!£———2{"—'l+!i§—ﬁ0]>0 {(3.2)

The function x (I,¢,y,1, 4 computed for the vector &0 @) (1™ () = (V2/2,V%/2) has the form

—rp 2
% = VLI(;E'F:L {w'(hz__‘sa)_*_g-(ﬁ-—‘){fia“‘ﬂ}—

2
A 4+2V2)a(B®— ) id 4 Oalyd — 23 + l,gt(ﬂht) (re —2) —
(i+2V'2)a(0—t))ln’]+0(M

This function is convex for all realizations pld, [ 01 <® if a sufficiently large and

Um+‘w>['/s(1+2m—"v§—g‘]0 (3.3)

Conditions (3.2) and (3.3) are fulfilled if s + %0 = 2090, Thus, we have found and initial
position for which there is no regularity in the sense of /1,3/, but the method described in
the paper remains applicable.

The author thanks E.G. Al'brekht and A.I. Subbotin for constant attention to the work.



10.

REFERENCES

KRASOVSKII N.N., Game Problems on the Contact of Motions. Moscow, NAUKA, 1970.

KRASOVSKII N.N. and SUBBOTIN A.I., Positional Differential Games. Moscow, NAUKa, 1974.

BATUKHTIN V.D., On the differentiability of the value of a differential encounter game.
Differents. Uravnen., Vol.8, No.l12, 1972,

LOGINOV M.I., On a linear guidance game problem., PMM Vol.42, No.4, 1978.

PONTRIAGIN L.S., Linear differential pursuit games. Mat. Sb., Vol.1ll12, No.3, 1980.

ROCKAFELLAR R.T., Convex Analysis. Princeton, NJ, Princeton Univ. Press, 1970.

PSHENICHNYI B.N., Convex Analysis and Extremal Problems, Moscow, NAUKA, 1980.

KARLIN S., Mathematical Methods and Theory in Games, Programming and Economics . Reading,
MA, Addison-Wesley Publ. Co., Inc., 1959,

AL'BREKHT E.G., On the encounter of quasilinear objects. PMM Vol.34, No.4, 1970.
FILIPPOV A.F., Differential equations with a discontinuous right-~hand side. Mat. Sb., Vol.
51, No.l, 1960,

Translated by N.H.C,



